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Abstract. One of the most surprising consequences of quantum mechanics is the entanglement of two or
more distant particles. Even though we still have questions in regard to fundamental issues of the entan-
gled quantum systems, quantum entanglement has started to play important roles in practical applications.
Quantum imaging is one of the hot topics. Quantum imaging has many interesting features which are use-
ful for different applications. For example, quantum imaging can be nonlocal, which is useful for secure
two-dimensional information transfer. Quantum imaging can reach a much higher spatial resolution com-
paring with classical imaging, even beyond the diffraction limit, which is useful for lithography and other
microsystem fabrication technology. It is not a violation of the uncertainty principle, however, a quantum
mechanical multi-particle phenomenon.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements – 42.25.Fx Diffraction and scattering

One of the most surprising consequences of quantum me-
chanics is the entanglement of two or more spatially dis-
tant particles [1]. In a maximally entangled two-particle
system, the value of an observable (either space-time or
spin observable) for neither single subsystem is determi-
nate (superposition). However, if one of the subsystems is
measured to be at a certain value for that observable the
other one is 100% determined, despite the distance between
the particles. In other words, each of the two subsystems
may have completely random values, or all possible values,
for some physical observable, in the course of its propa-
gation, but when one of them is found to have a certain
value in a physical measurement, the value of the other is
determined with certainty immediately [1].

Even though there are still questions in regarding to
fundamental issues of quantum theory, quantum entangle-
ment has started to play important roles in practical engi-
neering applications such as quantum imaging and quan-
tum lithography.

Quantum imaging has many interesting features which
are useful for different applications. For example, quantum
imaging can be nonlocal, which is useful for secure two-
dimensional information transfer. Quantum imaging can
reach a much higher spatial resolution comparing with
classical imaging, even beyond the diffraction limit, which
is useful for lithography and other microsystem fabrication
technology.
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In this paper, after introducing the concept of quantum
entanglement in the first two sections, we review in the
following sections two of our recent experiments provid-
ing some background understanding of the basic concepts
and working principle of quantum imaging and quantum
lithography. Brief discussions of the uncertainty principle
will be given in the last section.

1 Quantum entanglement

The two-particle entangled state was mathematically for-
mulated by Schrödinger [2]. Consider a pure state for a
system composed of two spatially separated subsystems,

ρ̂ = |Ψ〉 〈Ψ | , |Ψ〉 =
∑
a,b

c(a, b) |a〉 |b〉 (1)

where {|a〉} and {|b〉} are two sets of orthogonal vectors
for subsystems 1 and 2, respectively, and ρ̂ the density
matrix. If c(a, b) does not factor into a product of the
form f(a) × g(b) then it follows that the state does not
factor into a product state for subsystems 1 and 2:

ρ̂ �= ρ̂1⊗ ρ̂2. (2)

The state was defined by Schrödinger as the entangled
state.

The first classic example of a two-particle entangled
state was suggested by Einstein, Podolsky, and Rosen in
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1935 [1]:

|Ψ〉 =
∑
a,b

δ (a + b − c0) |a〉 |b〉 (3)

where a and b are the momentum or the position of parti-
cle 1 and 2, respectively, and c0 is a constant. A surprising
feature about the EPR state is the following: the value of
the momentum (position) for neither single subsystem is
determinate, i.e., the particle may have any value or all
possible values of momentum (position), in the course of
its propagation. However, if one of the subsystems is mea-
sured to be at a certain value, the value of the other one
is determined immediately, despite the distance between
the particles. This point can be easily seen from the delta
function in equation (3).

Another classic example of an entangled two-particle
system, suggested by Bohm is the singlet state of two spin
1/2 particles [3]:

|Ψ〉 =
1√
2

[|↑〉1 |↓〉2 − |↑〉1 |↓〉2] (4)

where the kets |↑〉 and |↓〉 represent states of spin “up”
and spin “down”, respectively, along any arbitrary direc-
tion n̂. Again for this state, the spin for neither particle
is determined. It could be “up” or “down” along any di-
rection, or all directions, in the course of its propagation.
However, if one particle is measured to be spin up (down)
along a certain direction, the other one is determined spin
down (up) along that direction immediately, despite the
distance between the two spin 1/2 particles.

2 Two-photon state of spontaneous
parametric down conversion

The state of a signal-idler photon pair of spontaneous
parametric down conversion (SPDC) [4] is a typical en-
tangled EPR state. SPDC is a nonlinear optical process
from which a pair of signal-idler photon is generated when
a pump laser beam is incident onto an optical nonlinear
crystal. Quantum mechanically, the state can be calcu-
lated by the first order perturbation theory [5,6],

|Ψ〉 =
∑
s,i

δ (ωs + ωi − ωp) δ (ks + ki − kp)

× a†
s(ω(ks)) a†

i (ω(ki))|0〉 (5)

where ωj , kj (j = s, i, p) are the frequency and wavevector
of the signal (s), idler (i), and pump (p) respectively, ωp

and kp can be considered as constants, a†
s and a†

i are cre-
ation operators for signal and idler photon, respectively.

Figure 1 shows a color picture of the two-photon pair
generated from SPDC. The pair is generated in such a
way that the energy and momentum of neither one is
determinate. Each signal and idler photon may have, si-
multaneously, all possible colors (energy) and all possible
directions (momentum) in the course of its propagation.

Fig. 1. Photo picture of spontaneous parametric down conver-
sion. The signal and the idler photon can have any color (en-
ergy) and can propagate to any direction (momentum). How-
ever, if the energy and momentum of one of them is known
through a measurement, the energy and momentum of the
other is then 100% determined. Experimentally, one can de-
tect a photon at any point on the color “rainbow”; however,
if one receives a “click” at a chosen point on the color “rain-
bow” there is only one unique corresponding point on the op-
posite side of the “rainbow” to receive its twin by means of a
“click-click” coincidence measurement. The scattered light in
the center is the “blocked” pump laser beam.

However, if one of them is measured to have certain en-
ergy and momentum the energy and momentum of its
twin is determined with certainty. It is an entangled two-
photon state, but not a state of two individual photons [7].
We have introduced an effective two-photon wavefunction
for the signal-idler pair of SPDC, which may be helpful
for the understanding of the entanglement nature of the
state [5,6].

The two-photon wavepacket or biphoton can be calcu-
lated according to the standard quantum field theory [8].
The non-factorizable effective two-photon wavefunction
Ψ(t1, t2) (2-D in configuration space) is calculated to
be [5,6,9,10],

Ψ(t1, t2) = A0e−σ2
+(t1+t2)

2
e−σ2

−(t1−t2)2e−iΩst1e−iΩit2 (6)

for type-I SPDC [11], where Ωj , j = s, i, is the central
frequency for signal or idler, 1/σ± are “coherence times”
associated with the SPDC field (σ−) and the pump field
(σ+), ti ≡ Ti − ri/c, i = 1, 2, Ti is the detection time of
detector i and ri the optical pathlength from the SPDC to
the ith detector. For type-II SPDC [11], the wavepacket
Ψ(t1, t2), or biphoton, is calculated with an asymmetrical
(with respect to the “zero” of t1 − t2) rectangular shape,

Ψ(t1, t2) = A0e−σ2
+(t1+t2)

2
Π(t1 − t2) e−iΩst1e−iΩit2 (7)

where

Π(t1 − t2) =
{ 1

0
if
if

0 ≤ t1 − t2 ≤ DL

otherwise
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Fig. 2. Two-photon wavepacket envelopes for type-I (a) and
type-II (b) SPDC. Note: type-II wavepacket has a rectangular
shape in t1 − t2 and is asymmetric with respect to t1 − t2 = 0.

and D ≡ 1/uo − 1/ue, uo and ue are recognized as the
group velocities of the ordinary and extraordinary rays
of the SPDC crystal, and L is the length of the crystal.
Figure 2 is a schematic diagram of Ψ(t1, t2) for type-I and
type-II SPDC, respectively.

The signal-idler photon pair of SPDC has been
widely used to prepare EPR-Bohm-Bell states for photon-
polarization [12]. The four Bell states which form a com-
plete orthonormal basis are usually represented as,

|Φ(±)
12 〉 =

1√
2
{|0102〉 ± |1112〉},

|Ψ (±)
12 〉 =

1√
2
{|0112〉 ± |1102〉} (8)

where |0〉 and |1〉 represent the two orthogonal polariza-
tion bases, for example, |H〉 (horizontal) and |V 〉 (vertical)
linear polarization, respectively. In this representation the
associated two-photon wavepackets (space-time) has been
ignored. However, to prepare Bell states experimentally, it
is very important to make the wavepackets “overlapping”,
i.e., quantum mechanically indistinguishable, to keep the
“superposition” in equation (8) valid.

3 “Ghost” image experiment

The first quantum imaging experiment which was done
in our laboratory has received the names “ghost” image
and “quantum crypto-FAX” by the physics community.
These experiments demonstrated the working principle of
nonlocal quantum imaging [13].

The schematic of the “ghost” image experimental
setup is shown in Figure 3 [13]. The entangled photon pairs
are generated from spontaneous parametric down conver-
sion (SPDC) [4]. The 351.1 nm line of an argon ion laser is
used to pump a BBO (β-BaB2O4) crystal which is cut at
a degenerate type-II phase matching angle [11] to produce
a pair of orthogonally polarized signal (e-ray of the BBO)
and idler (o-ray of the BBO) photon. The pair emerges
from the crystal nearly collinear, with ωs

∼= ωi
∼= ωp/2,

where ωj (j = s, i, p) are the frequencies of the signal,
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Fig. 3. Schematic setup of the “ghost” image experiment.

idler, and pump, respectively. The pump is then sepa-
rated from the down conversion by a UV grade fused sil-
ica dispersion prism and the remaining signal and idler
beams are sent in different directions by a polarization
beam splitting Thompson prism. The signal beam passes
through a convex lens with a 400 mm focal length and
illuminates a chosen aperture (mask). As an example, we
have used letters “UMBC” for the object mask. Behind
the aperture is the detector package D1, which consists of
a 25 mm focal length collection lens in whose focal spot is
a 0.8 mm diameter dry ice cooled avalanche photodiode.
The idler beam is met by detector package D2, which con-
sists of a 0.5 mm diameter multi-mode fiber whose output
is mated with another dry ice cooled avalanche photodi-
ode. The input tip of the fiber is scanned in the transverse
plane by two encoder drivers. The single and joint detec-
tion rates of the two detectors are recorded.

The singles counting rate at each detector is constant.
By recording the joint detection counting rates as a func-
tion of the fiber tip’s transverse plane coordinates, we see
the image of the chosen aperture (for example “UMBC”),
as is reported in Figure 4. It is interesting to note that
while the size of the “UMBC” aperture inserted in the
signal beam is only about 3.5 mm × 7 mm, the observed
image measures 7 mm × 14 mm. We have therefore man-
aged linear magnification by a factor of 2. Despite the com-
pletely different physical situation, the remarkable feature
here is that the relationship between the focal length of
the lens f , the aperture’s optical distance from the lens
So, and the image’s optical distance from the lens (from
lens back through beamsplitter to BBO then along the
idler beam to the image) Si, satisfy the Gaussian thin
lens equation:

1
so

+
1
si

=
1
f
· (9)

In this experiment, we chose So = 600 mm, and the twice
magnified clear image was found when the fiber tip was in
the plane of Si = 1200 mm.

It is not difficult to explain this unusual phenomenon
according to standard quantum theory. The “ghost” effect
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Fig. 4. (a) Upper: a reproduction of the actual aperture
“UMBC” placed in the signal beam. (b) Lower: the image of
“UMBC”: coincidence counts as a function of the fiber tip’s
transverse plane coordinates. The step size is 0.25 mm. The
data shown is a “slice” at the half-maximum value.

is due to the entanglement nature of the two-photon state.
The δ functions in equation (5), in the form of energy and
momentum conservation, is technically called the phase
matching condition:

ωs + ωi = ωp, ks+ki = kp. (10)

The spatial correlation (position-position) of the signal-
idler pair, which encourages two-dimensional imaging ap-
plications, is the result of the transverse components of the
wavevector phase matching condition (or the momentum-
momentum entanglement):

ks sin αs = ki sin αi (11)

where αs and αi are the scattering angles inside the crys-
tal. Upon exiting the crystal, Snell’s law thus provides:

ωs sin βs = ωi sin βi (12)

where βs and βi are the exit angles of the signal and idler
with respect to kp direction. Therefore, in the near de-
generate case, the signal-idler pair are emitted at roughly
equal, yet opposite, angles relative to the pump, and the
measurement of the momentum (vector) of the signal pho-
ton determines the momentum (vector) of the idler photon
with unit probability and vice versa. This then allows for
a simple pictorial viewing of the experiment in terms of
“usual” geometrical optics in the following manner: we
envision the crystal as a “hinge point” and “unfold” the
schematic of Figure 3 into that shown in Figure 5. Be-
cause of the equal angle requirement of equation (12), we
see that all the signal-idler pairs which result in a joint
detection can be represented by straight lines (but keep
in mind the different propagation directions) and there-
fore the image is well produced in joint detections when
the aperture, lens, and fiber tip are located according to
equation (9). In other words, the image is exactly the same

BBO

S = 600mm S = 1200mm

f = 400mm

D

fiber

1

lens

lens
collection

tip plane

o i

Fig. 5. A conceptual “unfolded” version of the schematic
shown in Figure 3, which is helpful for understanding the
physics. Although the placement of the lens and the detec-
tor obeys the Gaussian thin lens equation, it is important to
remember that the geometric rays actually represent pairs of
signal-idler photon which propagate in different directions.

as one would observe on a screen placed at the fiber tip if
detector D1 were replaced by a point-like light source and
the BBO crystal by a reflecting mirror.

Quantum theory does provide a solution for this un-
usual “ghost” phenomenon. What we have concluded
above is that the signal-idler photon pair can have 100%
certainty in both momentum-momentum and position-
position correlations. This conclusion may alert us im-
mediately about the uncertainty relations: does it lead
to the violation of the uncertainty principle, as EPR
and Popper observed [1,14]? Our answer is: no! As a
matter of fact, in an entangled two-photon system one
could not even have two independent wavepackets, in-
stead one would find a non-factorizable two-dimensional
bi-particle wavepacket [5], which is the result of the su-
perposition of the two-photon amplitudes. If there is an
uncertainty relation for the entangled two-photon sys-
tem, it is based on the non-factorizable two-dimensional
bi-particle wavepacket but not on the individual single-
photon wavepackets.

It should be emphasized that the momentum-
momentum correlation and the position-position corre-
lation may be simulated, separately, by some classi-
cal processes. However, it is impossible to simulate the
momentum-momentum and position-position correlation
simultaneously. Classically, two particles may have a well
defined momentum-momentum correlation. For example,
by using two co-moving lasers or two co-moving sniper
guns one can manage a pair of laser pulses or bullets prop-
agating to certain pre-defined directions. One may place a
mask in one path and project the mask in the other path
by recording the non-blocked (these bullets which pass the
mask) pairs pulse by pulse or shot by shot, see detail in
reference [15]. However, an optical projection is not an im-
age. One can never achieve precise position-position corre-
lation at the same time. It would be indeed a violation of
the uncertainty principle if one could. The spatial resolu-
tion of the projection is basically determined by the size of
the laser beam or the size of the bullet of the sniper gun.
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Fig. 6. Schematic of a microscope used for optical lithogra-
phy. Note: the transistor indicates a complicated lithography
pattern, which is used to build up p-n junctions of millions of
transistors and other components of an integrated circuit. The
demagnified transistor is a “carton” picture of the reduce-sized
pattern, which is not in real scale.

One may assume a “zero” size, however, the uncertainty
relation will make the spatial resolution even worse.

Once again, in the two-photon system of SPDC, unlike
the classical simulation, the momentum for neither signal
nor idler is pre-determined before the measurement, i.e.,
each photon may have any value and direction or all pos-
sible values and directions of momentum, in the course of
its propagation. Quantum entanglement is principally dif-
ferent from the pre-determined classical correlation. It is
the quantum entanglement that makes it possible to have
momentum-momentum and position-position correlation
simultaneously. It is the superposition of the two-photon
amplitudes determines the spatial resolution of the two-
photon imaging. This point can be further seen from next
section.

Even though we still have questions in regard to funda-
mental issues of the entangled quantum systems, quantum
entanglement has started to play important roles in practi-
cal applications. The above quantum imaging physics lead
to an exciting practical application: quantum lithography,
which may improve the spatial resolution of an image even
beyond the diffraction limit.

4 Diffraction limit – A topic of quantum
lithography

Quantum lithography is a topic that has recently attracted
much attention [16]. Classical optical lithography tech-
nology is facing its limit due to the diffraction effect of
light. However, this classical limit can be surpassed, sur-
prisingly, by utilizing the quantum nature of entangled
N -photon states. In an idealized experimental situation,
the spatial resolution of the lithography imaging can be
N times higher than that of the classical limit [17,18].

We have realized a two-photon Young’s interference-
diffraction experiment recently, which may be consid-
ered as a proof-of-principle quantum lithography demon-
stration [18]. The experiment could be adapted for an
N -photon lithography scheme which has the potential to
beat the diffraction limit of classical lithography by a fac-
tor of N .

Figure 6 shows a schematic picture of a microscope
used for lithography. A classical light source is used to

make a reduce-sized image of a complicated pattern, for
example a lithography pattern for building up p-n junc-
tions of millions of transistors, on the surface of a sili-
con chip. The resolution of the reduced image cannot be
better than half of the wavelength of the classical light
source λ/2, due to the diffraction effect. In other words,
to this limit, one cannot reduce the size of the image any
more. How to improve the spatial resolution? Classically,
the only choice is to reduce the wavelength of the light.
However, when the wavelength is too short, for example to
the X-ray region, the optical microscope will stop working.
There are no effective lenses working at such short wave-
lengths. Quantum theory provides us another choice: keep
the optical wavelength, but make it N -photon entangled
state. One would be able to achieve a spatial resolution
equivalent of using a classical light with wavelength λ/N .

To demonstrate the quantum lithography idea exper-
imentally, one could compare the spatial resolution of a
microscope image by using classical and entangled multi-
photon state. It is not an easy job, especially in the case
of N = 2. To have a clear demonstration, the experi-
ment has to be done in a clever way. What we did was
to measure the interference-diffraction pattern of single or
double-slit on the Fourier transform plane (or far-field) of
a lens. We know that the first lens of a lithography micro-
scope is making a Fourier transform of the “object” and
the second lens transforms it back to a reduce-sized image.
If one could measure the Fourier transform of the “object”
and show that the Fourier transform for the N -photon en-
tangled light of wavelength λ is equivalent to that obtained
using a classical light of λ/N instead of λ, one would see
immediately that the spatial resolution of the reduce-sized
image obtained by the second lens will be N times better.
In our recent experiment, we have measured the Fourier
transforms of single-slits and double-slits, which are play-
ing the role of the “complicated” pattern for lithography.
We found that under certain experimental conditions, the
two-photon double-slit interference-diffraction pattern has
spatial interference modulation period smaller and diffrac-
tion pattern width narrower, by a factory of two, than that
in the classical case. This result is equivalent to the case of
using classical light of wavelength λ/2. So that the reduce-
sized image shall have the potential to beat the diffraction
limit of classical lithography by a factor of N .

Figure 7 schematically shows a classical one-
dimensional optical diffraction by a single slit. A well col-
limated laser beam of wavelength λ passes the slit and
then its intensity distribution is analyzed in the Fourier
transform plane (or in the far-field zone). This distri-
bution, which is the diffraction pattern of a single slit,
is well-known to be sinc2(β), where the parameter β =
(πa/λ) sin θ 
 (πa/λ)θ, a is the width of the slit, and θ is
the angle shown in Figure 7 [19]. When β reaches π, the
superposition of the wavelets results in a minimum inten-
sity. The sinc2(β) pattern determines the minimum width
one can obtain. Usually, this minimum width is called the
“diffraction limit”.

To surpass the diffraction limit, our scheme is to
utilize the entangled nature of an N -particle system.
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Fig. 7. Classical single-slit diffraction. Zero intensity occurs
when the secondary waves (“amplitudes”) interfere destruc-
tively.
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Fig. 8. Schematic of a two-photon diffraction-interference
gedankenexperiment. The right and left sides of the picture rep-
resent signal and idler photons of an entangled pair. Detectors
D1, D2 perform the joint detection (coincidence) measurement.

To understand the physics of this scheme, consider a
gedankenexperiment which is illustrated in Figure 8a. An
entangled photon pair of wavelength λ can be generated
anywhere in region V ; however, photons belonging to the
same pair can only propagate (1) oppositely (momentum
entanglement) and (2) horizontally (position entangle-
ment; i.e., the pair either pass the upper or the lower slits
together) as indicated in the figure. Two slits are placed
symmetrically on the left and right sides of the entangled
photon source. A photon-counting detector is placed into
the far-field zone (or the Fourier transform plane, if lenses
are placed following the slits) on each side, and the coin-
cidences between the “clicks” of both detectors are regis-
tered. The two detectors are scanning symmetrically, i.e.,
for each coincidence measurement, both detectors have
equal x-coordinates. A two-photon joint detection is the
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Fig. 9. Schematic of the experimental setup. Details are given
in the text.

result of the superposition of the two-photon amplitudes,
which are indicated in the figure by straight horizontal
lines [20]. To calculate two-photon diffraction, we need to
“superpose” all possible two-photon amplitudes. Different
from the classical case, it is a double integral involving the
two slits and the two-photon amplitudes (parallel lines in
Fig. 8). The two-photon counterpart of the classical inten-
sity, the joint detection counting rate, is now sinc2(2β),
which gives narrower distribution than the classical pat-
tern by a factor of two. This narrowed pattern is the same
diffraction pattern one would observe for wavelength λ/2.
Now if we “fold” the symmetrical left and right sides of
the experimental setup together and replace the two in-
dependent detectors with a film that is sensitive only to
two-photon light (two-photon transition material), then in
principle, we have two-photon lithography.

If one replaces the single slit in the above setup with
a double-slit, Figure 8b, it is also interesting to see that
under the half-width diffraction pattern, the double-slit
two-photon spatial interference pattern has a higher mod-
ulation frequency, as if the wavelength of the light were re-
duced to one-half. To observe the two-photon interference,
one has to “erase” the first-order interference by reinforc-
ing an experimental condition: δθ > λ/b where δθ is the
divergence of the SPDC light, b is the distance between
the two slits, and λ is the wavelength.

The heart of this gedankenexperiment is a special two-
photon source: the pair has to be generated in such
a desired entangled way as described above; i.e., pre-
cise momentum-momentum and position-position entan-
glement. We have found and demonstrated that, under
certain conditions, the two-photon state generated via
spontaneous parametric down conversion (SPDC) satis-
fies the above requirements.

The schematic setup of the experiment is illustrated in
Figure 9. It is basically the “folded” version of a double-slit
interference-diffraction experiment shown in Figure 8b.
The 458 nm line of an argon ion laser is used to pump
a 5 mm BBO (β-BaB2O4) crystal, which is cut for degen-
erate collinear type-II phase matching to produce pairs
of orthogonally polarized signal (e-ray of the BBO) and
idler (o-ray of the BBO) photons. Each pair emerges from
the crystal collinearly, with ωs 
 ωi 
 ωp/2, where ωj

(j = s, i, p) are the frequencies of the signal, idler, and
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Fig. 10. (a) Experimental measurement of the coincidences for
the two-photon double-slit interference-diffraction pattern. (b)
Measurement of the interference-diffraction pattern for classi-
cal light in the same experimental setup. With respect to the
classical case, the two-photon pattern has a faster spatial inter-
ference modulation and a narrower diffraction pattern width,
by a factor of 2.

pump, respectively. The pump is then separated from the
signal-idler pair by a mirror M, which is coated with reflec-
tivity R 
 1 for the pump and transmissivity T 
 1 for the
signal-idler. For further pump suppression, a cutoff filter
F is used. The signal-idler beam passes through a double-
slit, which is placed close to the output side of the crystal,
and is reflected by two mirrors, M1 and M2, onto a pin-
hole P followed by a polarization beam splitter PBS. The
signal and idler photons are separated by the beam split-
ter and are detected by the photon counting detectors D1

and D2, respectively. The output pulses of each detector
are sent to a coincidence counting circuit with a 1.8 ns ac-
ceptance time window for the signal-idler joint detection.
Both detectors are preceded by 10 nm bandwidth spec-
tral filters centered at the degenerate wavelength, 916 nm.
The whole block containing the pinhole, PBS, the detec-
tors, and the coincidence circuit can be considered as a
two-photon detector. Instead of moving two detectors to-
gether as indicated in Figure 8, we rotate the mirror M1 to
“scan” the spatial interference-diffraction pattern relative
to the detectors.

One important point to be emphasized is that the
double-slit must be placed as close as possible to the out-
put surface of the BBO crystal. Only in this case, can
the observed diffraction pattern be narrower than in the
classical case by a factor of 2.

Figure 10 reports the experimental results. In our ex-
periment, the width of each slit is a = 0.13 mm. The dis-

tance between the two slits is b = 0.4 mm. The distance
between the slits and the pinhole P is 4 m. Figure 10a
shows the distribution of coincidences versus the rotation
angle θ of mirror M1. The spatial interference period and
the first zero of the envelope are measured to be 0.001 and
±0.003 radians, respectively.

For comparison, we also measured the first-order
interference-diffraction pattern of a classical light with
916 nm wavelength by the same double-slit in the same
experimental setup, see Figure 10b. The spatial interfer-
ence period and the first zero of the envelope are measured
to be 0.002 and ±0.006 radians, respectively.

In both “classical” and “quantum” cases, we obtain
similar standard Young’s two-slit interference-diffraction
pattern, sinc2[(πa/λ)θ] cos2[(πb/λ)θ]; however, whereas
the wavelength for fitting the curve in Figure 10b (classi-
cal light) is 916 nm, for the curve in Figure 10a (entangled
two-photon source) it has to be 458 nm. Clearly, the two-
photon diffraction “beats” the classical limit by a factor
of 2.

To be sure that we observed the effect of the SPDC
photon pair with wavelength of 916 nm but not the pump
laser beam with wavelength of 458 nm, we remove or ro-
tate the BBO crystal 90-degree to a non-phase-matching
angle and examine the coincidence counting rate. The
coincidences remain zero during the 100 second period,
which is the data collection time duration for each of the
data points, even in high power operation of the pump
laser. Comparing this with the coincidence counting rate
with BBO under phase-matching, see Figure 10a, there
is no doubt that the observation is the effect due to the
SPDC.

To explain the result, we have to take into account the
quantum nature of the two-photon state of SPDC. Sim-
ilar to the analysis in the “ghost” imaging experiment,
see equations (5, 10–12), in the near degenerate case, the
signal-idler pair are emitted at roughly equal, yet opposite,
angles relative to the pump, and the measurement of the
momentum (vector) of the signal photon determines the
momentum (vector) of the idler photon with unit probabil-
ity and vice versa. This then allows for a “unfold” simple
pictorial viewing of the experiment as shown in Figure 8.

The coincidence counting rate Rc is given by the prob-
ability P12 of detecting the signal-idler pair by detectors
D1 and D2 jointly,

P12 = 〈Ψ |E(−)
1 E

(−)
2 E

(+)
2 E

(+)
1 |Ψ〉

=
∣∣∣〈0|E(+)

2 E
(+)
1 |Ψ〉

∣∣∣
2

, (13)

where |Ψ〉 is the two-photon state of SPDC and E1, E2 are
fields on the detectors. The effect of two-photon Young’s
interference can be easily understood if we assume for sim-
plicity that signal and idler photons always go through the
same slit and never go through different slits. This approx-
imation holds if the variation of the scattering angle inside
the crystal satisfies the condition:

∆θ � b/D, (14)
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where D is the distance between the input surface of the
SPDC crystal and the double-slit. In this case, the state
after the double-slit can be written as

|Ψ〉 = |0〉 + ε [a†
sa

†
i exp(iϕA) + b†sb

†
i exp(iϕB) ]|0〉 , (15)

where ε � 1 is proportional to the pump field and the
nonlinearity of the crystal, ϕA and ϕB are the phases of
the pump field at region A (upper slit) and region B (lower
slit), respectively, and a†

j , b†j are the photon creation oper-
ators for photons passing through the upper slit (A) and
the lower slit (B), respectively. In our experiment, the
ratio (b/D)/∆θ 
 30 and equation (14) is satisfied well
enough. Moreover, even the ratio (a/D)/∆θ is of order of
10, which satisfies the condition for observing two-photon
diffraction:

∆θ � a/D. (16)

In equation (13), the fields on the detectors are given by:

E
(+)
1 = as exp(ikrA1) + bs exp(ikrB1)

E
(+)
2 = ai exp(ikrA2) + bi exp(ikrB2) (17)

where rAi (rBi) are the optical path lengths from region A
(B) to the ith detector. Substituting equations (15, 17)
into equation (13), we get

Rc ∝ P12 = ε2 |exp(ikrA + iϕA) + exp(ikrB + iϕB)|2
∝ 1 + cos[k(rA − rB)], (18)

where we define rA ≡ rA1 + rA2. We have assumed ϕA =
ϕB in equation (18).

In the far-field zone (or the Fourier transform plane),
interference of the two amplitudes from equation (15)
gives

Rc(θ) ∝ cos 2[(2πb/λ)θ]. (19)

Equation (19) has the form of a standard Young’s two-slit
interference pattern, except having the modulation period
one-half of the classical case or an equivalent wavelength
of λ/2.

To calculate the diffraction effect of a single slit, we
need an integral of the effective two-photon wavefunction
over the slit width. Quite similarly to equation (19), it
gives

Rc(θ) ∝ sinc2[(2πa/λ)θ]. (20)

Equation (20) has the form of standard single-slit diffrac-
tion pattern, except having half of the classical pattern
width.

The combined interference-diffraction coincidence
counting rate for the double-slit case is given by

Rc(x) ∝ sinc2[(2πa/λ)θ) cos 2[(2πb/λ)θ], (21)

which is a product of equations (19, 20).
The experimental observations have confirmed the

above quantum mechanical predictions.

One may not see advantages from the above proof-of-
principle demonstration. The photon pair is generated in
SPDC. So that the pump laser wavelength is one-half of
the signal and idler. The improved resolution is the same
as that of using the pump laser itself. The advantage, how-
ever, is in the case of large number of entangled particle
states. One of our approaches is based on our entangled
N -photon scheme (N ≥ 3) [21]. In this approach, one can
“beat” the classical limit by a factor of N and still keep
the “pump” laser beam wavelength close to one-half that
of the entangled photon beam (λ/N versus λ/2).

5 The uncertainty principle

We have concluded from the lithography experiment that
the observed entangled two-photon diffraction pattern
width is one-half of that of the “classical” light. This con-
clusion may alert us immediately about the uncertainty
relations. What is the uncertainty relation for its momen-
tum ∆px and its position ∆x when a photon passes a sin-
gle slit of width ∆x = a? In his lecture, Feynman pointed
out that it is the same as shown by the diffraction pattern
of a “classical” light. Quantitatively, the first minimum of
the diffraction pattern reflects the minimum uncertainty
relation: ∆x∆px = h [22]. The estimation is straightfor-
ward.

Considering the classical single-slit diffraction exper-
iment illustrated in Figure 7, the first minimum of the
diffraction pattern happens at angle,

β = π = (πa/λ)∆θ.

This lead to,

∆θ = λ/a,

so that,

∆px 
 p∆θ = (h/λ)∆θ = (h/a),

so that,

∆x∆px = h. (22)

It is impossible to produce a “narrower” diffraction pat-
tern by a single photon source, or any classical simulation.
Otherwise, the quantum mechanical uncertainty principle
would be violated. However, we have observed a diffraction
pattern which satisfies ∆x∆px = h/2 from a two-photon
source. Does it mean a violation of the uncertainty rela-
tions by a factor of two? Does it mean we are proposing a
violation of the uncertainty relations by a factor of N in
the case of N -photon entangled state?

The answer is no! What we have observed is not a vio-
lation of the uncertainty principle, because of a very sim-
ple physics: the entangled two-photon state is not a state
of two individual photons. In an entangled two-photon
system, one cannot consider each photon individually to
“produce” a diffraction pattern and the measurement to
show the product of the two. The entangled two-photon



Y. Shih: Quantum imaging, quantum lithography and the uncertainty principle 493

state cannot be factorized as a product, and neither can
the diffraction pattern of the two-photon system. The two-
photon diffraction pattern is the result of the superposi-
tion of the two-photon amplitudes, but not that of the in-
dividual subsystems. References [6,23,24] might be helpful
for further understanding of the above important physics.

In conclusion, we have shown the possibility of quan-
tum imaging by using two-photon entangled states. The
two-photon imaging can be “nonlocal” and can have a
spatial resolution beyond the diffraction limit by a factor
of two.

References

1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777
(1935)

2. E. Schrödinger, Naturwissenschaften 23, 807 (1935), 823,
844; translations appear in Quantum Theory and Measure-
ment, edited by J.A. Wheeler, W.H. Zurek (Princeton Uni-
versity Press, New York, 1983)

3. D. Bohm, Quantum Theory (Prentice Hall Inc., New York,
1951)

4. D.N. Klyshko, Photon and Nonlinear Optics (Gordon and
Breach Science, New York, 1988); A. Yariv, Quantum Elec-
tronics (John Wiley and Sons, New York, 1989); “Sponta-
neous Parametric Down Conversion” was called “Sponta-
neous Fluorescence” and “Spontaneous Scattering” by the
pioneer workers

5. M.H. Rubin, D.N. Klyshko, Y.H. Shih, Phys. Rev. A 50,
5122 (1994); A.V. Sergienko, Y.H. Shih, J. Opt. Soc. Am.
B 12, 859 (1995); Y.H. Shih, A.V. Sergienko, Phys. Rev.
A 50, 2564 (1994)

6. Y.H. Shih, “Two-Photon Entanglement and Quantum
Reality”, Advances in Atomic, Molecular, and Optical
Physics, edited by B. Bederson, H. Walther (Academic
Press, Cambridge, 1997)

7. T.B. Pittman et al., Phys. Rev. Lett. 77, 1917 (1996);
D.V. Strekalov, T.B. Pittman, Y.H. Shih, Phys. Rev. A
57, 567 (1998); Y.H. Shih, “Two-Photon Entanglement
and Quantum Reality”, in Advances in Atomic, Molecular,
and Optical Physics, edited by B. Bederson, H. Walther
(Academic Press, Cambridge, 1997)

8. R.J. Glauber, Phys. Rev. 130, 2529 (1963); 131, 2766
(1963)

9. Y.H. Shih, A.V. Sergienko, Phys. Rev. A 50, 2564 (1994)
10. A.V. Sergienko, Y.H. Shih, M.H. Rubin, JOSA B 12, 859

(1995)
11. In type-I SPDC, signal and idler are both ordinary (or

extraordinary for positive crystal) rays of the SPDC crys-
tal; however, in type-II SPDC the signal and idler are or-
thogonally polarized, i.e., one is ordinary and the other is
extraordinary

12. C.O. Alley, Y.H. Shih, International Symposium on Foun-
dations of Quantum Mechanics in the Light of New Tech-
nology, edited by M. Namiki et al. (Physical Society of
Japan, Tokyo, 1986), p. 47; Y.H. Shih, C.O. Alley, Phys.
Rev. Lett. 61, 2921 (1988); Z.Y. Ou, L. Mandel, Phys. Rev.
Lett. 62, 50 (1988); T.E. Kiess et al., Phys. Rev. Lett. 71,
3893 (1993); P.G. Kwiat et al., Phys. Rev. Lett. 75, 4337
(1995); Kwiat et al., Phys. Rev. A 60, R773 (1999); Y.-H.
Kim, S.P. Kulik, Y.H. Shih, Phys. Rev. A 62, 011802(R)
(2000)

13. T.B. Pittman, Y.H. Shih, D.V. Strekalov, A.V. Sergienko,
Phys. Rev. A 52, R3429 (1995); D.V. Strekalov, A.V.
Sergienko, D.N. Klyshko, Y.H. Shih, Phys. Rev. Lett.
74, 3600 (1995); two-photon young’s double-slit interfer-
ence type experiment, may not be in the “ghost” format:
P.H.S. Ribeiro, S. Padua, J.C. Machado, G.A. Barbosa,
Phys. Rev. A 49, 4176 (1994); A. Zeilinger, Rev. Mod.
Phys. 71, 288 (1996); an overview of the field of quantum
imaging: L.A. Lugiato, A. Gatti, E. Brambilla, J. Opt. B
4, 176 (2002)

14. K.R. Popper, Naturwissenschaften 22, 48, 807 (1934);
K.R. Popper, From the Postscript to the Logic of Sci-
entific Discovery, edited by E.I. Bitsakis, N. Tambakis
(Gutenberg Publishing, 1984); K. Popper, Quantum The-
ory And The Schism In Physics, edited by W.W. Bartly
(Hutchinson, London, 28, 1983); amongst the most notable
opponents to the “Copenhagen School” were Einstein-
Podolsky-Rosen, de Broglie, Landé, and Karl Popper. One
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